
Introduction

Anaerobic digestion (AD) is a biochemical reaction 
consisting of the hydrolysis stage, acetogenesis stage, 
and methanogenesis stage [1]). The AD process 
generates two main products: biogas and digestates 
[2]. The compositions of biogas are 50-70% of methane 
(CH4), 30-45% of carbon dioxide (CO2), and other 

impurities of hydrogen sulfide, ammonia, and water 
vapour [3]. 

The raw material of biogas can be obtained from 
organic materials such as the residue and by-products of 
vegetables since it has high organic content and moisture 
[4]. Mustard greens (Brassica juncea) are plentiful 
plants in Indonesia. Nevertheless, after harvesting, the 
farmers are inclined to waste the mustard greens due to 
the imbalanced market price and cultivation cost [5]. 

The potential biogas production assay, also called 
biochemical methane potential (BMP), is the primary 
parameter for describing the wastes and determining  
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the optimal variables of the anaerobic digestion process 
[6]. The BMP also determines the fraction of organic 
carbon in each substrate that can be converted to 
methane [7].

The mathematical models can represent the 
potential of digester performance and provide the 
theoretical biogas yield [8]. Numerous methods for 
calculating theoretical methane potential are based on 
chemical oxygen demand (COD), primary composition, 
and kinetic models [9]. Most studies have focused 
on determining biogas potential using chemical 
composition and substrate COD [10-12]. However, 
no study has investigated the relationship between 
dilution volumes and biochemical methane potential 
by determining a regression model. Therefore, this 
study aimed to evaluate the effect of dilution volume on 
biochemical methane potential and determine the kinetic 
parameters by simulating different kinetic models. The 
study provides originality by adding new knowledge 
based on our hypotheses which find a significant 
correlation between dilution volume and kinetic results 
during anaerobic digestion of mustard green residues.

Material and Methods
 

Feedstock and Inoculum Preparation

Mustard green was collected from vegetable sellers 
in Yogyakarta, Indonesia. The green mustard residuals 
were shredded and stored at 20ºC. Yeast was used as 
inoculum containing 44% carbohydrates, 44% protein 
and 12% fat. 

Anaerobic Digestion Experimental Set-up

The substrate and 50 g yeast were fed in batch 
digesters. The experiment was performed in different 
water dilution volumes of 1 L, 1.5 L, and 2 L. The 
substrate-to-inoculum ratio (S/I ratio) was maintained 
at 5 (based on the dry matter content). The anaerobic 
digestion test was conducted for 40 days.

Analytical Method

Volatile solids (VS) and chemical oxygen demand 
(COD) were analyzed according to standard methods. 
Biogas volume was measured using the water 
displacement method. Corrected biogas volumes were 

calculated using the equation below [13]:

           (1)

Where VSTP is biogas volume of standard temperature 
and pressure (L); VT is a volume of biogas measured at 
temperature T (L); T is the temperature of biogas or 
ambient space (ºC); Pw is saturated vapor pressure at the 
ambient temperature (mmHg).

MS Excel performed the analysis of variance 
(ANOVA). The significant results were checked with 
a p-value less than 0.05. The kinetic parameters were 
determined using regression analysis by Solver in MS 
Excel. 

The theoretical methane yield was performed 
according to the following equation [14].

(2)

Kinetic Models

The first-order, Fitzhugh, modified Gompertz models 
fit the measured biogas yields. Model equations are 
presented in Table 1.

Mt represents the cumulative methane production 
(CMP), mL/gVS; t represents for anaerobic digestion 
time, day; M0 represents the simulated methane potential 
(mL/gVS); Rm is the maximum methane production rate, 
mL/gVS/day; e equals to 2.7183; n is a dimensionless 
shape factor, and l represents the lag phase time, day.

Results and Discussion

Effect of Dilution Volumes 
on Biogas Production 

The influence of dilution volumes on biogas 
production is presented as daily and cumulative 
biogas yields in Fig. 1 and Fig. 2, respectively. Biogas 
production was initiated on day 4 with biogas yields  
of 261.44 mL/gVS, 411.76 mL/gVS, and 392.16 mL/gVS 
at dilution volumes of 1 L, 1.5 L, and 2 L, respectively. 
Biogas production then increased gradually 
until reaching peak yields of 372.55 mL/gVS,  
931.37 mL/gVS, and 1490.20 mL/gVS on day 12 at 

Table 1. The kinetic model to express biogas production from batch anaerobic digestion of mustard green wastes.

Model Equation References

First-order [15]

Fitzhugh [16]

Modified Gompertz [17]
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dilution volumes 1 L, 1.5 L, and 2 L. Biogas production 
then dropped progressively with the lowest yield 
obtained on day 40. 

Fig. 2 illustrates an enormous cumulative yield of 
4372.58 mL/gVS was obtained at a dilution volume of 
2 L, followed by cumulative yields of 1781.70 mL/gVS 
and 3026.85 mL/gVS for dilution volumes of 1 L and 
1.5 L, respectively. An increase in dilution volumes 
gained a positive effect on biogas production. Statistical 
analysis performed that dilution volumes affected 
biogas production significantly with a p-value of 0.008 
(p<0.05).

The prior study conducted by Jeppu et al. [18] 
reported that as dilution increased, the biogas production 
also increased during the anaerobic digestion of cow 
dung. A similar result exposed that the highest dilution 
generated high methane [19].

Kinetic Results

Table 2 presents the relevant results of model 
parameters. Among the three kinetic models used  
in this experiment, the modified Gompertz model 
performs the slightest difference (0.29-0.9%) between 
the calculated and measured biogas yield (Mo) 
followed by the Fitzhugh model (0.69-4.17%), whereas 
a tremendous difference (4.62-7.28%) between the 
calculated and measured biogas yield is obtained in the 
first-order kinetic model. For the Fitzhugh and first-
order model, the values of k were almost constant for 
all substrates in each dilution volume. However, the 
Fitzhugh model provided a higher k than the first-order 
model. The R2 obtained by the Fitzhugh model was also 

Fig. 1. Daily biogas yields during anaerobic digestion of mustard 
green residues.

Fig. 2. Cumulative biogas yields during anaerobic digestion of 
mustard green residues.

Table 2. Kinetic parameters of first-order, Fitzhugh, and modified Gompertz models.

Model Parameters
Dilution volumes

1 L 1.5 L 2 L

First-order

Mo (mL/gVS) 1960.54 3383.57 5102.59

k (1/day) 0.076 0.076 0.065

R2 0.9185 0.9196 0.9397

difference 4.62% 6.00% 7.28%

Fitzugh

Mo (mL/gVS) 1707.43 2977.15 4342.38

k (1/day) 0.096 0.092 0.084

n 3.00 3.00 3.00

R2 0.9976 0.9974 0.9976

difference 4.17% 1.64% 0.69%

modified Gompertz

Mo (mL/gVS) 1779.00 3055.07 4414.37

Rm (mL/gVS/day) 130.19 255.06 402.86

l (day) 2.04 3.17 4.68

R2 0.9995 0.9992 0.9992

difference 0.29% 0.86% 0.90%
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higher than the first-order kinetic model. Therefore, 
the Fitzhugh model is more appropriate for calculating 
the rate constants (k). The higher k indicated the 
rapid degradation rate and fast biogas production [20].  
The lower dilution volume (1 L) obtained a higher k 
which denoted the enhanced substrate degradation and 
biogas yield.

The ultimate methane yield (M0) could be calculated 
from the Fitzhugh, modified Gompertz and first-
order kinetic model. For all models, the value of the 
ultimate biogas yield of substrates increased with 
dilution volume increased. For the modified Gompertz 
model, the maximum methane production rate (Rm) 

increased with increasing dilution volumes; however,  
the lag phase (l) was more extended as dilution volumes 
increased. This phenomenon might imply that the 
Gompertz model is inaccurate enough to predict the lag 
phase under the studied circumstances. The prolonged 
lag phase might occur due to the long hydrolysis  
time and slow methanogenesis [21]. The previous  
study also reported that the lag phase increased as the 
biogas production rate increased in the anaerobic co-
digestion of Thai rice noddle wastewater and chicken 
manure [11]. 

Fig. 3 shows the regression fitting of the experimental 
data following first-order, Fitzhugh and modified 
Gompertz models. According to the results, all three 
models could simulate the anaerobic digestion of mustard 
green wastes well due to the R2>0.9 for all models. 
However, the experimental data fit very well with the 
modified Gompertz. Furthermore, the values of R2 show 
that the modified Gompertz model prediction to the 
experimental value is statistically higher than the first-

Fig. 3. Regression fitting of cumulative biogas yield following 
first-order, Fitzhugh, and modified Gompertz models in different 
dilution volumes: a) 1 L; b) 1.5 L; c) 2 L.

Fig. 4. Correlation between COD total and theoretical methane 
yield for different dilution volumes: a) 1 L; b) 1.5 L; c) 2 L.
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correlate with theoretical methane yield by obtaining  
a p-value of 0.01 (p<0.05). 
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